Question 1 - Mathematical Induction

Show that $3^{3n-2} + 2^{3n+1}$ is divisible by 19 for all positive integers $n = 1, 2,$
Question 2 - Complex numbers
Find all the complex solutions of $e^z = -2$.
Question 3 - Limits
Find values of a and b such that $\lim_{x\to 0} \frac{\sqrt{ax+b}-3}{x} = 1$.
Question 4 - Limits
Prove, using the precise definition of limit, that $\lim_{x\to -1}(2x+1)=-1$.

SOWISO 2021 1

Question 5 - Mean Value Theorem

Prove that for all real numbers a and b , the inequality $ \sin(a) - \sin(b) \le a - b $ holds.
Question 6 - Differentiation
Obtain the derivative of $y = (3x)^{\sin(\sqrt{x}) + 2x}$.
Question 7 - L'Hospital's Rule
Find all integer values of n for which the limit $\lim_{x\to\infty} x^n e^{-x}$ is well defined.
[Notes: Recall that well-defined means that the Limit is finite.]
Question & Fundamental Theorem of Calculus

Question 8 - Fundamental Theorem of Calculus

Find
$$\frac{d^2}{dx^2} \int_0^x \left(\int_1^{\sin t} \sqrt{1 + u^4} du \right) dt$$
.

[**Hints:** apply the Fundamental Theorem of Calculus 2 times. It may be useful to first regard the integral $\int_1^{\sin t} \sqrt{1 + u^4} du$ as a function f(t). That is, first define $f(t) = \int_1^{\sin t} \sqrt{1 + u^4} du$ and use the FTC to compute $\frac{d}{dx} \int_0^x f(t) dt$. Then, proceed with the computation of the derivative of what you obtained.]

2 SOWISO 2021

Question 9 - Integration
Find the integral $\int \frac{dx}{ax^n+bx}$, where a and b are non-zero real constants and n is any positive integer greater than 1.
Question 10 - Integration
Compute the integral $\int \sec^2 \theta \ln(\tan \theta) d\theta$.
Question 11 - Application of integration
Find the area of the surface of revolution obtained by revolving the curve defined by $y^2 + 4x = 2 \ln y$, from $y = 1$ to $y = 2$, around the x-axis.

SOWISO 2021 3

Question 12 - Taylor series

Compute (or approximate) the integral $\int \sqrt[a]{x} \cdot e^{x^b} dx$ for arbitrary positive integers a and b .
Question 13 - Differential Equations
Solve the differential equation $y' \cos x + y \sin x = 1$
Question 14 - Differential Equations
Solve the differential Equation $x^4y^2y' = (y^3 - 1)^{3/5}$

SOWISO 2021 4